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摘 要：利用层状半导体 β相硒化铟作为可饱和吸收体，在掺镱光纤激光器中实现稳定的调Q及锁模运

转。经测量该可饱和吸收体在 1 μm波段调制深度及非饱和损耗分别为 47%及 20%。将可饱和吸收体

插入掺镱光纤激光器中，可获得 53.42 kHz到 217 kHz重频可调的调Q脉冲。其最窄脉冲宽度为 630 ns，
最大单脉冲能量为 47.9 nJ。优化激光谐振腔后可进一步实现稳定的锁模输出，其重频为 10.82 MHz，最

大输出功率为 51.2 mW，最大单脉冲能量为 4.7 nJ。实验证明了 β相硒化铟作为可饱和吸收体在近红外

超快非线性光学方面的潜力。
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Abstract：A stable Q-switched and mode-locked Ytterbium Doped Fiber Laser（YDFL）based on layered
semiconductor β-InSe as Saturable Absorber（SA）were demonstrated for the first time. The modulation
depth and non-saturable absorbance of the SA were 47% and 20%，respectively. After inserting the SA
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into YDFL，the stable Q-switched pulse operation can be easily obtained with the repetition rate range
from 53.42 kHz to 217 kHz. The minimum pulse duration was 630 ns and the maximum single pulse energy
was 47.9 nJ. By optimizing the laser resonator，a stable mode-locking pulse with repetition rate of 10.82 MHz，
maximum output power of 51.2 mW and maximum single pulse energy of 4.7 nJ can be achieved. The
experimental results demonstrated that β-InSe SA has great potential in near infrared ultrafast nonlinear optical.
Key words：Saturable absorbers；Q-switched lasers；Fiber lasers；Mode-locked lasers；Indium selenides
OCIS Codes：140.3510；140.3540；140.3615；140.4050；160.4330

0 Introduction

Compared with Continuous Wave（CW）fiber lasers，pulse fiber lasers have the advantage of narrow pulse
duration and high pulse energy. In recent years，it has developed rapidly in many fields，such as optical
frequency comb，laser waveguide，optical fiber communication，biomedicine and so on［1］. In order to modulate
the laser operation from CW into pulsed regime，passive Q-switching and passive mode-locking technology
have become the mainstream of the laser development due to their low cost and all-fiber structure. SA is the
most critical device for pulse generation. At present，the most stable saturable absorber is Semiconductor
Saturable Absorber Mirrors（SESAMs）［2］. However，some problems，such as high production cost and low
damage threshold that limit the maximum output power，remain to be solved. Therefore，the SAs with high
modulation depth，high damage threshold and high stability have attracted more attentions. Two dimensional
layered semiconductor materials，a kind of SAs with ultrafast recovery time，wide absorption range and
adjustable band gap，mainly divided into three types：Transition-Metal Dichalcogenides（TMDs）［3-5］，Black
Phosphorus（BPs）［6-8］，and III-VI compound layered semiconductors［9-10］.

III-VI compound layered semiconductors have great application prospects in infrared detection，
photoelectric devices and solar cells due to the characteristics of small band gap and high environmental
stability［9］. III-VI compound layered semiconductors with a variety of crystal structures and stacking
arrangements are mainly divided into MX（such as InSe，GaSe，GaS and GaTe）and MaXb（such as In2Se3 and
In3Se4）. For example，InSe has four different crystal configurations，which are β，ε，γ，δ ［11］. The two most
common configurations are β-InSe and γ-InSe. InSe and In2Se3 have a direct band gap of 1.26 eV and 1.36 eV，

respectively. Fiber laser based on In2Se3 SA have been widely reported recently. In 2018，YAN Peiguang，et
al［12］studied thewideband saturable absorption property of In2Se3 at 800，1 560，and 1 930 nm，and by using
In2Se3 as SA， which a mode-locking operation can be achieved. The same year， AHMAD H， et
al［13］demonstrated passively Q-switched Bi-EDF laser with an In2Se3 SA，the maximum available pump power
of 134 mW and a wide tuning range of 40 nm，covering a wavelength range of 1 533 nm to 1 573 nm. In 2020，
HAI Ting，et al［14］proved In2Se3 SA can be used for fiber lasers in the 3 to 4 µm waveband. WANG Lizhen，et
al［15］ reported stable mode-locked soliton pulses with 158 fs pulse duration and 2.72 mW average power based
on graphene/α -In2Se3 heterostructure SA. In 2021，LI Lu，et al［16］obtained a dual-wavelength Q-switched
EDF laser. The narrowest pulse duration and largest pulse energy was 556 ns and 376 nJ，respectively.
However，most report based on In2Se3 operate in anomalous dispersion region，and the 1 µm fiber laser based on
InSe SA had not been studied yet.

In this work，we constructed a YDFL by using β-InSe nonoflakes as SA，which was sandwiched into two
FC/APC fiber end face with a fiber flange. After inserting the SA into YDFL system，a stable Q-switched
pulse with minimum pulse duration of 0.63 μs and the maximum pulse energy of 47.9 nJ can be achieved.
Meanwhile，A stable mode-locked pulse operation was generated after optimization with the maximum output
power of 51.2 mW，corresponding to the maximum pulse energy of 4.7 nJ. Our YDFL system based on β-InSe
SA have the advantage of the compact structure，low production cost and independent of the polarization
evolution in the cavity. All polarization-maintaining structure can be used to further enhance its stability.

1 β-InSe SA fabrication and characterization

Bulk InSe was prepared in a tube furnace by the Bridgman method. In addition，InSe nanoflakes were
prepared by mechanical exfoliation with 3M Scotch tape. β-InSe，belonging to the D4

6h space group，consists of



1014003⁃3

ZHANG Zihao，et al：Passively Q-switched and Mode-locked All-fiber Yb-doped Laser with
β-InSe Saturable Absorber（Invited）

four atomic layers（Se-In-In-Se），and each layer is connected by van der Waals（vdWs）interactions arranged
in a hexagonal atomic lattice. The structure and composition of β-InSe were confirmed by Raman spectroscopy，
X-Ray Diffraction（XRD），Scanning Electron Microscope（SEM），and Energy Dispersive Spectrometer
（EDS）. Three prominent peaks at 118，181，and 230 cm-1 were observed，which correspond to the A1

1g，E12g，
and A2

1g vibration modes of β -InSe，respectively（Fig. 1（a））. As shown in Fig. 1（b），typical XRD pattern
matches well with the standard data file PDF 34-1431，indexing a=b=0.40 nm and c=1.66 nm of each unit
cell. Fig. 2 displays the appearance and the composition of bulky β-InSe crystal. The two elements（In and Se）
were uniformly distributed in the material，and the atomic ratio of In/Se was around 1∶1. All of those
measurements indicate the high crystalline quality of the as-grown β-InSe crystal.

We used the Liquid Phase Exfoliation（LPE）method［17］ to fabricate the β -InSe SA. The β -InSe alcohol
solution was prepared by mixing 1 mg β-InSe powder with 7 mL alcohol solution，then subjected to bath sonication
for 3.5 h. Finally，we take the supernatant and drop it on the FC/APC fiber end face. The β -InSe will be
transferred onto FC/APC fiber end face after the alcohol volatilized. The microscope image of the FC/APC fiber
end face was shown in Fig. 3（a）. It can be seen that the FC/APC fiber core was covered with β-InSe nanoflakes.

Fig. 1 The Raman and XRD spectrum of bulky β-InSe

Fig. 2 The appearance and the composition of bulky β-InSe
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Used the twin-detector technique to investigate the nonlinear absorption properties of the β -InSe SA. A
home-made Yb-doped Nonlinear Polarization Evolution（NPE）mode-locked fiber laser was used as seed
source，which has a pulse duration of 120 fs，center wavelength of 1042 nm and repetition rate of 41.58 MHz. A
Variable Optical Attenuator（VOA）was used for power regulation. The light splitted by a 50∶50 fiber coupler，
and one port passing through the SA was signal port and another was reference port. The transmittance curve of
the SA as a function of pump power was demonstrated in Fig. 3（b）. The saturable absorption mode was based
on the following formula

T ( I) = 1- ∆T × exp (- I/Isat)- A ns

where T is transmission，∆T is modulation depth，I is input intensity of the laser，Isat is saturable power
intensity and Ans is non-saturable absorbance. By fitting the experimemtal results，the modulation depth and
non-saturable absorbance in 1 µm were 47% and 20%，respectively.The saturation intensity was 0.039 MW/cm2.

2 Experiment setup and results

2.1 Q-switched Ytterbium-doped fiber laser
The experiment setup was shown in Fig. 4. A commercial 976 nm laser diode was used as pump source.

The pump light was coupled by a 980/1 030 wavelength division multiplexer. A 20 cm single-mode Ytterbium
doped fiber（Liekki Yb 1200-4/125，Vancouver，USA）was used as gain medium，and Polarization Controller
（PC）was used to adjust intracavity nonlinearity. The polarization independent isolator keeped unidirectional
operation in the cavity. A coupler（SR4889，AFR，Zhuhai，China）with 20% output was employed to output
the laser. An 8 nm bandpass filter（BPF-1030，OF-Link，Suqian，China） was added to the cavity for
wavelength selection. The total length of the cavity was 6.4 m.

The laser characteristics were monitored by a real-time sampling oscilloscope（Tektronix DPO3052，500
MHz，2.5 GS/S，Shanghai，China） and an optical spectrum analyser（Ocean Optics HR2000，Shanghai，
China）was utilized to record the optical spectrum. A photodetector（Thorlabs DET10A/M，Shanghai，China）

Fig. 3 The microscope image and the transmission curve of β-InSe SA

Fig. 4 Schematic of Yb-doped all-fiber laser
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was employed to monitor the temporal evolution and output power of the output pulse train.
The Q-switched operation was realized by adjusting the PC and increasing pump power at 50 mW and the

output power was 1.85 mW. The low Q-switching threshold benefited from the low saturation intensity and
large modulation depth of SA. Besides，the low output power also indicated that there was a large loss in the
cavity. The output power increased linearly with the increasing of pump power. With pump power increased to
350 mW，the maximum output power was 10.2 mW. However，when the pump power exceeded 350 mW，the
Q-switched operation disappeared，because the SA was over bleached under the high pump power. As shown in
the Fig. 5（a），with the pump from 50 to 350 mW，the repetition rate increasing from 53.42 to 217 kHz，while
the single pulse duration decreasing from 1.7 to 0.63 μs. As shown in Fig. 5（b），the maximum single pulse
energy was 47.9 nJ. Figs. 5（c）and 5（d）illustrated the maximum 3-dB bandwidth of 3 nm and the minimum
pulse duration of 630 ns at the pump power of 250 mW.

We compare with the passively Q-switched YDFL performance based on different 2D materials. As Table 1
shows，our work achieved the shortest pulse width of 0.63 μs，highest pulse energy of 47.9 nJ.

Fig. 5 The characteristics of Q-switched pulse in Yb-doped fiber laser

Table 1 Comparison of passively Q-switched YDFL performance based on different 2D materials

SA

Fe3O4

MoS2
Bi2Te3
WTe2
Lu2O3

β-InSe

Q-Switched
threshold/mW

80
211.2
114
110
99
50

Repetition rate/
kHz

25.9~73.4
6.4~28.9
35~77
19~79
54.7~65.9
53.42~217

Min. pulse
width/μs
3.4
5.8
1
1
3.6
0.63

Max. pulse
energy/nJ
38.8
31.1
38.3
28.3
30
47.9

Wavelength/nm

1 049.8/1 053.3
1 066.5
1 056
1 044
1 037
1 030

Ref.

［18］
［19］
［20］
［21］
［22］

This Work
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2.2 Mode-locked Ytterbium-doped fiber laser
No mode-locking phenomenon was observed when we increasing the pump power or adjusting the PCs.

The possible reason was that the cavity loss was too large to obtained the mode-locking operation. Therefore，
we increased the YDF length to 40 cm. Then check the loss of devices in the cavity，and changed the FC/APC
fiber connector.

We removed the bandpass filter because the actual spectrum was much smaller than the bandwidth of the
BPF. In addition，the total cavity length was adjusted to 18.5 m，corresponding to a net dispersion of 0.247 ps2.

When the pump power increased to 210 mW and carefully adjusted the PC，stable passive mode-locking
operation was obtained. Under the maximum pump power of 700 mW，stable mode-locking operation can still
be obtained by slightly adjusting the PC. As shown in Fig. 6（a），the output power increased linearly with the
increasing of pump power. The maximum output power was 51.2 mW，corresponding to a single-pulse energy
of 4.7 nJ. The output power against pump power showed a slope efficiency of 8%. The spectrum and
oscilloscope trace at 700 mW pump power was shown in Fig. 6（b） and Fig. 6（c），respectively. the 3 dB
bandwidth was 1.2 nm. and the repetition rate was 10.82 MHz corresponding to the cavity length of 18.5 m. It
was worth noting that under the condition of high pump power. Obvious pulse splitting can be observed in the
oscilloscope by adjusted the tightness of PC. As shown in Fig. 6（d），the repetition rate of 34.48 MHz was not
an integral multiple of the fundamental frequency. Therefore we can eliminated the possibility of harmonic mode
locking operation. The stable single pulse mode-locking operation can be achieved again by return the PC to its
previous state. This phenomenon can be explained as follow：Pulse splitting usually occured when the pump
light was too strong or the single pulse energy was too large. Therefore，we can adjust the tightness of PC，
which was equivalent to introducing some loss，to reduce the pulse energy and avoid the pulse splitting.
However，the pulse duration of mode-locking pulse can not be obtained by using the autocorrelator（APE Pulse
CheckUSB）in our laboratory，probably because the actual spectrum was relatively narrow. In addition，there
was no dispersion compensation part in the cavity. A large number of positive chirps were accumulated in the

Fig. 6 The characteristics of Mode-locked pulse in Yb-doped fiber laser



1014003⁃7

ZHANG Zihao，et al：Passively Q-switched and Mode-locked All-fiber Yb-doped Laser with
β-InSe Saturable Absorber（Invited）

cavity. Positive chirp would caused pulse broadening in time domain so that pulse duration of mode-locking
pulse might exceeded the 50 ps maximum range of autocorrelator. Moreover，to further analyzed the stability of
our YDFL system. We measured the function between time and the output power，which was shown in Fig. 7.
The whole state was recorded for 24 h using a power meter. The calculated Root-Mean Square（RMS） is
around 0.5% with mode-locked pump power of 550 mw and output power of 39.7 mW.

Table 2 shows the performance of previously reported passively mode-locked YDFLs based on different
2D materials as SAs. It can be clearly reflected that we obtained the highest output power of 51.2 mW，and
highest pulse energy of ring laser cavity. Such laser with high output power is very promising for various
applications such as fiber sensors，laser-machining，and many other industrial applications.

3 Conclusion

In summary，we report Q-switched and mode-locked Yb-doped fiber laser based on β -InSe SA for the
first time. The maximum pulse energy of Q-switched pulse was 47.9 nJ and the minimum pulse duration was
630 ns. Stable mode-locking operation was successfully achieved with maximum output power of 51.2 mW，

corresponding to a single-pulse energy of 4.7 nJ. The output power and pulse energy can be further improved by
using a higher power pump source. Due to laboratory equipment limited，the pulse duration was not measured
yet. It can be solved by introducing dispersion management element to compensate the positive chirp. This work
proved the feasibility and application value of using β-InSe as saturable absorber in Ytterbium doped fiber laser.
The saturable absorption characteristics and ultrafast nonlinear optical applications in other near infrared bands
are also investigated in the future work.
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